
UnitParser

Last release -- Master source code

Main page (versión en español) -- Code analysis -- NuGet package -- Video

Introduction

The main class is called UnitP (FlexibleParser namespace). It can be instantiated in

many different ways.

//1 N.

UnitP unitP = new UnitP("1 N");

//1 N.
unitP = new UnitP(1m, UnitSymbols.Newton);

//1 N.
unitP = new UnitP(1m, "nEwTon");

//1 N.
unitP = new UnitP(1m, Units.Newton);

UnitP can be seen as an abstract concept including many specific types (full list).

Same-type variables can be added/subtracted. Different-type variables can be

multiplied/divided, but only in case of generating a valid-type output.

//2 N.

unitP = new UnitP("1 N") + new UnitP(1m, Units.Newton);

//1 J.

unitP = new UnitP("1 N") * new UnitP("1 m");

//Error not triggering an exception.

//The output unit N*m^2 doesn't match any supported type.

unitP = new UnitP("1 N") * new UnitP("1 m") * new UnitP("1 m");

Main Variable Information

UnitP variables are defined according to various readonly fields populated at

instantiation.

Unit - Corresponding Units member.

UnitType - Corresponding UnitTypes member.

UnitSystem - Corresponding UnitSystems member.

UnitParts - Defining parts of the given unit.

https://github.com/varocarbas/FlexibleParser/releases/tag/UnitParser_1.0.9.0
https://github.com/varocarbas/FlexibleParser/tree/master/all_code/UnitParser/Source
https://customsolvers.com/unit_parser/
https://customsolvers.com/unit_parser_es/
https://varocarbas.com/unit_parser_code/
https://www.nuget.org/packages/UnitParser/
https://www.youtube.com/watch?v=8LJptIg3Z4Y
https://github.com/varocarbas/FlexibleParser/blob/master/all_code/UnitParser/Source/Keywords/Public/Keywords_Public_Types.cs
https://github.com/varocarbas/FlexibleParser/blob/master/all_code/UnitParser/Source/Keywords/Public/Units/Keywords_Public_Units_Names.cs
https://github.com/varocarbas/FlexibleParser/blob/master/all_code/UnitParser/Source/Keywords/Public/Keywords_Public_Types.cs
https://github.com/varocarbas/FlexibleParser/blob/master/all_code/UnitParser/Source/Keywords/Public/Keywords_Public_Miscellaneous.cs
https://zenodo.org/record/803378

UnitPrefix - Supported prefix affecting all the unit parts.

BaseTenExponent - Base-ten exponent used when dealing with too small/big

values.

Error - Variable storing all the error- and exception-related information.

General Rules

All the functionalities are based upon the following ideas:

• In case of incompatibility, the first element is always preferred.

• By default, the formally-correct alternative is preferred. Some required

modifications might be performed.

• By default, all the errors are managed internally.

//1.3048 m.

unitP = new UnitP("1 m") + new UnitP("1 ft");

//Error not triggering an exception.

//The parser expects "km" or a full-name-based version like "KiLom".

unitP = new UnitP("1 Km");

//999999.999999900000 * 10^19 YSt.

unitP = 999999999999999999999999999999999999.9 * new UnitP("9999999999999 St");

Unit String Parsing Format

The unit string parsing part is quite flexible, but there are some basic rules.

• String multi-part units are expected to be exclusively formed by units,

multiplication/division signs and integer exponents.

• Only one division sign is expected. The parser understands that all what lies

before/after it is the numerator/denominator.

//1 W.

unitP = new UnitP("1 J*J/s*J2*J-1*s*s-1");

//Error not triggering an exception.

//The parser understands "J*J/(s*J2*s*J*s)", what doesn't represent a supported type.

unitP = new UnitP("1 J*J/(s*J2*s)*J*s");

Numeric Support

Formally, two numeric types are supported: decimal, almost everywhere;

and double, only in multiplication/division with UnitP variables.

Practically, UnitP variables implement a mixed system delivering decimal precision

and beyond-double-range support.

https://github.com/varocarbas/FlexibleParser/blob/master/all_code/UnitParser/Source/Keywords/Public/Keywords_Public_Prefixes.cs

//7.891011 ft.

unitP = new UnitP("1 ft") * 7.891011m;

//1.213141516 Gs.
unitP = new UnitP("1 s") * 1213141516.0;

//0.0003094346047382564187534467*10^-752 ym.

unitP = 0.001 * new

UnitP(0.000000000000000000001m, "ym2") /

new UnitP("999999999999999999999 Ym") / double.MaxValue / double.MaxValue;

Further Code Samples

The test application includes a relevant number of descriptive code samples.

Authorship & Copyright

I, Alvaro Carballo Garcia (varocarbas), am the sole author of each single bit of this

code.

Equivalently to what happens with all my other online contributions, this code can

be considered public domain. For more information about my copyright/authorship

attribution ideas, visit the corresponding pages of my sites:

• https://customsolvers.com/copyright/

ES: https://customsolvers.com/copyright_es/

• https://varocarbas.com/copyright/

ES: https://varocarbas.com/copyright_es/

https://github.com/varocarbas/FlexibleParser/blob/master/all_code/Test/Program.cs
https://customsolvers.com/copyright/
https://customsolvers.com/copyright_es/
https://varocarbas.com/copyright/
https://varocarbas.com/copyright_es/

	UnitParser
	Introduction
	Main Variable Information
	General Rules
	Unit String Parsing Format
	Numeric Support
	Further Code Samples
	Authorship & Copyright

