
PROJECT 7 - First Contact with Open .NET
Completed on 13-Feb-2016 (47 days) -- Updated on 19-Nov-2016

Introduction >

Open .NET Overview

Microsoft has decided to make the whole .NET Framework open source. It is a huge step in the

right direction with lots of implications, although all this is outside the scope of the current

project. Only the following code repositories are relevant here:

 CoreCLR. It contains the most basic parts. The majority of the code is written in (mostly
unmanaged/unsafe) C# and C++.

 CoreFX. It contains the remaining parts of the .NET Framework. Most of the code is
written in (mainly managed) C#, but also in C++ & VB.NET.

 Roslyn. It contains the last versions of the C#/VB.NET compilers (and all what is related
to compilation/Visual Studio, including a new subsystem delivering relevant insights
about the whole process). Most of the code is written in (mainly managed) C# &
VB.NET.

As shown in the corresponding page, I am mostly experienced in (managed) C# and VB.NET,

also in algorithm-building/efficiency-improvement. From the point of view of the programming

language, Roslyn (or even CoreFX) seems more appealing to me; on the other hand, the exact

programming language is not a big problem, mainly when dealing with properly-working

existing codes and by bearing in mind my relevant expertise in different environments.

This first open .NET project deals with CoreCLR because of providing the kind of access to basic

parts which is more appealing to a code-improver like me (at least for open-source

contributions, this is my favourite role). More specifically, this project is mostly focused on

ParseNumber (and on all the code related to it), which takes care of the string-analysis actions

needed by the parsing methods of all the .NET numeric types (although this project is mostly

focused on decimal.Parse and decimal.TryParse). It is contained in the file Number.cs,

which is part of mscorlib.dll where the most essential .NET functionalities are defined.

OVER-8-MONTH-LATER UPDATE

The PR associated with this project was accepted by the .NET team and merged into the

CoreCLR code; the proposed modifications were even extended to other repositories (i.e.,

CoreRT and CoreFX).

Most of the contents of the current project are still valid, although the following issues have to

be taken into account:

 I preferred to not remove certain parts which, despite being somehow obsolete,
contain valuable ideas.

https://varocarbas.com/project_7/1/
http://varocarbas.com/open_net/overview/
https://github.com/dotnet/coreclr
https://github.com/dotnet/corefx
https://github.com/dotnet/roslyn
http://varocarbas.com/about/
https://github.com/dotnet/coreclr/blob/master/src/mscorlib/src/System/Number.cs
https://github.com/dotnet/coreclr/pull/3163

All the contents which are related to CoreRun.exe belong to this category. Note that,
when this project was written, the user was forced to rely on that program directly via
command prompt (not the case with the current Core-based approach). To know more
about this specific issue, take a look at the also-updated Project 8.

 Additionally to comments on these lines at the bottom of various sections, I added the
new Tests > Additional Tests.

First Contributions

I firstly analysed Roslyn because of seeming the a-priori-most-appealing-to-me repository (as

already explained), although this experience wasn't too good. Additionally and unlikely what

happens with CoreCLR/CoreFX, this code is not too intuitively appealing to someone in my

situation (i.e., experienced .NET programmer expecting to easily locate "recognisable parts") as

far as it is mainly focused on the C#/VB.NET compilers. In any case, I will most likely contribute

to Roslyn in the future.

The aforementioned not-too-positive episode is helpful to understand why I quickly liked

CoreCLR so much. This time, I could easily find the code associated with virtually any feature

(e.g., all what is contained in the C#/VB.NET System namespace). Having full access to the

pure essence of the .NET Framework, my primary programming environment during the last

few years! That's why it didn't take me too long to post my two first issues (i.e., some hours

after having downloaded the code for the first time and on the next day):

 ISSUE #2285 "Problems with thousands separators when parsing strings to numbers"

 ISSUE #2290 "Decimal type not able to parse scientific notation"

Both of them are related to the behaviour of the current version of decimal.Parse and,

indirectly, to other parse methods of this and different numeric types. Curiously, I didn't

realise about any of these issues (i.e., thousands separators behaving unexpectedly and

scientific notation not being fully supported) at work, but while answering questions in

stackoverflow.com (my SO profile). In any case, I thought that both behaviours were worth

correcting, that's why I created those issues and actively participated in the associated

discussions.

After reading most of the comments in the aforementioned threads, anyone should easily

understand that I didn't enjoy this experience too much. The fact that both issues were closed

and the associated proposals rejected didn't bother me even a bit; on the other hand, I did find

the behaviours of some participants completely unacceptable, mainly in the issue #2285.

Anyone interested in knowing more about what happened there can take a look at both

threads and at the associated external references (IMO all this is a good condensed summary

of most of my online self-describing efforts, one of the requirements of the new Attitude 2.0, a

required-but-very-unappealing-to-me work).

In general terms, I am quite happy with various outputs of this curious experience; for

example: very clear ideas about what the .NET community implies (i.e., lots of people, not

necessarily too knowledgeable or reasonable) or the format of my contributions there (i.e.,

http://varocarbas.com/corerun_security/
http://varocarbas.com/open_net/tests_additional/
http://varocarbas.com/open_net/first_contributions/
http://varocarbas.com/open_net/overview/
http://varocarbas.com/open_net/overview/
https://github.com/dotnet/coreclr/issues/2285
https://github.com/dotnet/coreclr/issues/2290
http://stackoverflow.com/users/2480047/varocarbas
http://customsolvers.com/en/pages/attitude_2.0/

not-too-controversial-issues + forking + pulling + waiting). Additionally, I got various good

advices and met some quite knowledgeable people.

General Impression

I support any attempt to share relevant knowledge with a big enough community and,

consequently, any form of open software. Additionally to these generic open-is-good ideas,

the fact that most of the code is precisely written in .NET (C# & VB.NET) is a further motivation

for me: full access to the pure essence of my favourite programming languages which is

precisely written in such languages!

The code in CoreCLR (and also in the other repositories described in the first section) is huge,

but also well-structured/-commented; an experienced enough programmer can start messing

around with it right away. The compilation process is not simple and its outputs are not

precisely excellent, as explained in other parts of this project (e.g., CoreRun.exe). The

distribution among different languages (managed/unmanaged C# & C++; and also VB.NET in

other repositories) is not as systematic as it should ideally be. On the other hand, this is a quite

logical output for a so big project where relevant code migrations have occurred; additionally,

experienced programmers shouldn't have problems when dealing with more-or-less-generic

algorithms (i.e., not heavily relying on the specific features of the given programming

environment) in properly-working codes almost independently upon the used language. The

high quality of almost each bit of code in CoreCLR is also somehow relevant here; for example:

the fact of having worked on a virtually-perfect piece of software (+ my I-have-to-get-

something-good-here motivation) explains the highly-optimised output of this project (i.e.,

modified version of ParseNumber), not too likely to be created under different conditions

even by someone like me who is always keen on writing efficient codes.

Regarding the contribution process, I am still not in a position to have a worthy opinion on this

front (after having completed this project and pulled the modified version of ParseNumber, I

will update this part with my impressions). I had already a first interaction with the .NET

community which didn't like too much (as already explained), although I take this kind-of-

weird episode as a good lesson learned. In fact, I don't even have a bad opinion about the .NET

community, just a better-than-just-merely-intuitive understanding of it. Lastly, I am still not

sure about what to think regarding the .NET team attitude, although everything looks nice so

far (will also update this part after the future forking-pulling-waiting process will be over).

In summary, I have got a very good first impression (+ a somehow-problematic episode which

helped me understand better the "local peculiarities") and am certainly looking forward to

contributing to this project in a relevant way.

OVER-8-MONTH-LATER UPDATE

I have had quite a few other interactions with the .NET team/community in

CoreCLR/CoreFX/Roslyn and my overall impression is quite positive. There are many people

http://varocarbas.com/open_net/general_impression/
http://varocarbas.com/open_net/overview/
http://varocarbas.com/open_net/corerun/
http://varocarbas.com/open_net/first_contributions/

from different backgrounds and with different expectations, but most of the discussions are

meaningful and the contributions relevant.

The .NET team behaviour is certainly remarkable: quick and reasonable responses for virtually

any situation. Some important decisions (e.g., non-trivial PR acceptance) are understandably

associated with quite long waiting times.

Code Overview >

CoreCLR

As explained in the first section, CoreCLR is one of the three major open .NET repositories

where this project is precisely focused. It contains the most basic parts of the .NET Framework:

 The .NET Core runtime ("CoreCLR").

 The base library ("mscorlib").

 The garbage collector.

 The JIT compiler.

 Data types and low-level classes.

Most of the code in the CoreCLR repository is written in unmanaged/unsafe C# and in C++. My

experience in both languages is quite limited (although I am very experienced in managed

C#/.NET), but this fact will certainly not be a problem here because of the following two

reasons:

 I specialise in algorithm building and rely on a quite minimalistic approach (i.e., rarely
use the most complex features of the given programming environment). The defining
feature of unmanaged C# is precisely keeping everything very simple from the in-built-
feature-utilisation point of view.

 All my contributions to the open .NET project are expected to be focused on improving
existing-and-already-quite-optimised codes, an aspect where my eventually-not-too-
extensive experience in the given language is still less important.
Note that I am also planning to work on new implementations, but most of this code is
expected to be very similar to the existing one. For example: I will not be writing the
code of the future decimal.TryParseExact method (which will be accounting for
various currently-unsupported behaviours, like the ones described in my first two
issues in the CoreCLR repository #2285 and #2290) completely from scratch, but will
adapt the one of Decimal.TryParse (and its associated methods, like
ParseNumber).

The current project deals with the optimisation of ParseNumber (i.e., part of the mscorlib

library, inside the file Number.cs), which takes care of all the string-analysis actions of the .NET

numeric types; this project is mostly focused on Parse/TryParse of decimal, but also

accounts for int, long & double. Note that all these parsing methods are written in

unmanaged/managed C# & C++, although ParseNumber (and, consequently, this project) is

mostly written in unmanaged C#.

https://varocarbas.com/project_7/2/
http://varocarbas.com/open_net/coreclr/
http://varocarbas.com/open_net/overview/
https://github.com/dotnet/coreclr
https://github.com/dotnet/coreclr/issues/2285
https://github.com/dotnet/coreclr/issues/2290
https://github.com/dotnet/coreclr/blob/master/src/mscorlib/src/System/Number.cs

Methods

As explained in the first section, I got a quite good impression about the overall quality of the

open .NET code (i.e., not just in CoreCLR, but also in CoreFX and Roslyn): very clear structure,

efficient algorithms, descriptive comments, etc. All the parts analysed here (i.e., various

methods in the file Number.cs) are certainly not an exception to this statement.

This project is focused on the optimisation of ParseNumber and associated resources. All its

code is written in (almost-exclusively-)unmanaged C#, although C++ is also used in Number.cs

even in parts which are closely related to ParseNumber. The following three different

methods will be considered:

 Boolean ParseNumber(ref char* str, NumberStyles options,

StringBuilder sb, Boolean parseDecimal): it analyses the inputs to the
given parsing method, like Decimal.Parse (i.e., string to be converted into number
and arguments taking care of additional issues, like culture-related format); then
outputs the numerical characters which will be later transformed into the given type
(i.e., decimal) by NumberBufferToDecimal. All this code is unmanaged and highly
optimised (e.g., relevant usage of bitwise operations). Most of the performance-
improvement modifications of this project were precisely done to this method.

 char* MatchChars(char* p, char* str): it is called from ParseNumber, while
looping through the characters in the input string, and returns the position after the
given target (str). There is a second overload (char* MatchChars(char* p,
string str)) allowing the target to also be string.

 Boolean IsWhite(char ch): very simple method checking whether the given
character is blank. Anecdotally and unlikely the two aforementioned methods, this is
managed code.

Ideally, this algorithm should be optimised by completely rethinking how the problem is being

faced; specifically, the not-too-practical/efficient way in which the input information is stored

provokes unnecessary problems. For example: over-complicated/less-efficient algorithms or

over-usage of resources (e.g., most of potential inputs aren't analysed). Nevertheless, such an

expectation is beyond the scope of the current project and its final goal (i.e., pull request to

CoreCLR, whose likelihood to be accepted would be much lower in case of including

modifications in existing features). The decimal.TryParseExact method which I am

planning to create in the near future (likely to be part of Project 9) will certainly take care of

these issues, also account for various functionalities not supported by the current parsing

approaches.

CoreRun.exe

This project is about improving part of the CoreCLR source code; that's why recompiling the

whole code (or, at least, the mscorlib library) seems an a-priori basic requirement.

Compiling all the code in the CoreCLR repository is not completely straightforward (although

step-by-step instructions are available); even after being generated, the new libraries (e.g.,

mscorlib.dll) cannot be used right away, a quite logical consequence of what is being affected

(i.e., some of the basic libraries used by all the .NET applications running on that computer).

http://varocarbas.com/open_net/methods/
http://varocarbas.com/open_net/overview/
https://github.com/dotnet/coreclr/blob/master/src/mscorlib/src/System/Number.cs
http://varocarbas.com/open_net/corerun/
https://github.com/dotnet/coreclr/tree/master/Documentation/building

CoreRun.exe is one of the outputs generated when building the whole CoreCLR repository and

allows any .NET executable to rely on the newly-created libraries. This file is so peculiar that

the whole Project 8 is precisely focused on analysing its security implications.

The most relevant-to-this-project feature of CoreRun.exe is to have a noticeable impact on the

performance of the given .NET file: the same executable under exactly the same conditions can

be orders of magnitude slower when run via CoreRun.exe. Just this fact might not be too

relevant on account of the goals of the current project (i.e., relative measurements of

performance, where 5 vs. 10 is identical to 50 vs. 100), but these variations are definitely not-

consistent what does represent an immediate deal-breaker.

Standalone applications will be used in all the performance-comparison tests; they will be run

directly (i.e., as conventional executables on Windows), rather than via CoreRun.exe. On the

other hand, CoreRun.exe will be used in all the tests confirming the identity between old/new

versions of the code (i.e., all the numeric-type parsing methods, like decimal.Parse, tested

against a big set of inputs by relying on the old/new mscorlib.dll).

Tests >

Preliminary Ideas

Unexpectedly, I have spent most of my time here by trying to come up with the best approach

to measure the performance differences between both methods (i.e., old & new versions of

ParseNumber). The fact that the original version was already optimised is the main reason

explaining so many difficulties in this in-principle-easy part. Additionally, the optimisation

process wasn't precisely straightforward (e.g., I found some of the Irrelevant Issues quite

surprising), what avoided me to have clear enough ideas regarding the expected

measurements (i.e., being sure about the exact effects of certain modification would have

been helpful to quickly spot problems with the tests).

Although the basic structure of the main program didn't change appreciably since the start,

the whole testing approach (i.e., the C# program, its inputs and the way in which the time

differences were measured) had many relevant changes. Roughly speaking, it passed through

the following stages:

 Firstly, I relied on CoreRun.exe because of assuming that this was the best way to
emulate realistic conditions. As already explained, this assumption was quickly proven
wrong: CoreRun.exe has an important negative (and not consistent) impact on the
given .NET executable performance. Nevertheless, CoreRun.exe is used for the last
validation stage, where the modified ParseNumber version is tested under as-
realistic-as-possible conditions; this is done with ParseNumber_Validation.exe which
iterates through the Parse and TryParse methods of various types (i.e., decimal,
int, long and double).

 For my first tests without CoreRun.exe, I relied on two different executables (e.g.,
new.exe & old.exe). But back then the gap between both approaches wasn't too

http://varocarbas.com/corerun_security/open_net/
https://varocarbas.com/project_7/3/
http://varocarbas.com/open_net/tests_preliminary/
http://varocarbas.com/open_net/improvements_irrelevant/
http://varocarbas.com/open_net/corerun/
https://github.com/varocarbas/ParseNumber_Validation

relevant and running two different programs represented an unacceptable increase in
uncertainty. That's why I didn't try this option for too long.

 Even before moving to the both-in-the-same-file approach, I was aware about the
associated increase of uncertainty (i.e., running one method affects the time
measurements of the other one). After trying different ways to minimise this influence
(e.g., setting different pauses at different points, pre-warming or affecting GC), I
confirmed that the most reliable methodology was alternating the order in which the
versions were measured (note that I also tested a random-order approach which was
proven less reliable).

 Then I moved back to two different executables; also tried to make the testing
algorithm as efficient as possible to confirm whether these effects (i.e., smaller pauses
between consecutive calls) had a relevant effect on the observed performance
differences. The resulting application was the first version of ParseNumber_Test2.exe,
the definitive testing program. There were some relevant changes after this, but all of
them are listed in the corresponding section.

Testing Approaches

As already explained, finding out the best testing environment wasn't easy and that's why I

tried different approaches. Roughly speaking, I used (and created) two programs:

ParseNumber_Test.exe and ParseNumber_Test2.exe. The first one accounts for both old (i.e.,

original ParseNumber code) and new (i.e., modified ParseNumber, expected to be notably

quicker) versions; and the second one only deals with one version every time (i.e., two

different executables have to be generated); additionally, the second version is much more

efficient (e.g., minimalist time tracking).

Regarding ParseNumber and related methods (i.e., MatchChars and IsWhite), there have

always been two different classes: New for the improved versions and Old for the original

ones. I have added slight-and-not-affecting-performance modifications in both of them to

minimise the code size; it has to be noted that the original version of ParseNumber (i.e., the

one used inside mscorlib.dll) relies on internal classes which cannot be accessed via Visual

Studio.

The basic structure of the two aforementioned programs is formed by the following three

nested loops:

 The main and most external loop performs a finalMax number of iterations. The
version (i.e., Old.ParseNumber or New.ParseNumber) which is considered by all the
loops below is defined here (i.e., the specific type of method to consider: 0 for
New.ParseNumber and 1 for Old.ParseNumber).

 The second loop iterates through the contents of inputs.txt. This file includes
randomly-varying numbers (one per line) and is generated by ParseNumber_Gen.exe.
Four different types of inputs can be generated: decimal, int, long and double; all
the tests were focused on decimal and that's why this feature is only required by
ParseNumber_Validation.exe. An additional issue to bear in mind is that the values
from inputs.txt might be altered on account of the NumberStyles value under
consideration, as explained below.

https://github.com/varocarbas/ParseNumber_Test2
http://varocarbas.com/open_net/tests_definitive/
http://varocarbas.com/open_net/tests_approaches/
http://varocarbas.com/open_net/tests_preliminary/
https://github.com/varocarbas/ParseNumber_Test
https://github.com/varocarbas/ParseNumber_Test2
https://github.com/varocarbas/ParseNumber_Gen
https://github.com/varocarbas/ParseNumber_Validation

 The third and most internal loop iterates through a list of NumberStyles and calls the
corresponding ParseNumber version. Initially, it accounted for all the possible values
(i.e., NumberStyles enum members) with no further modification; for example:
calling Old.ParseNumber (or New.ParseNumber) with the inputs "5.5" &
NumberStyles.AllowDecimalPoint, "5.5" &
NumberStyles.AllowParentheses and so on. Later, I started to account for
special cases, where the given NumberStyles value is associated with certain
modifications in the input string; for example: "5" &
NumberStyles.AllowDecimalPoint, but then "(5)" &
NumberStyles.AllowParentheses. Note that ParseNumber is used under many
different input conditions, like the Parse/TryParse methods of all the numeric types
(e.g., decimal, int, double, etc.), and that not all the NumberStyles values are
always effective; for example: NumberStyles.AllowHexSpecifier and
NumberStyles.HexNumber only make sense*** with integer types (e.g., int or
long). On the other hand and after confirming the similarities among different types,
the performance tests were completely focused on decimal; the remaining main
numerical types were exclusively considered during the final validation via
CoreRun.exe (i.e., by using ParseNumber_Validation.exe). Nevertheless, I did enough
tests to conclude that the input conditions don't have a relevant effect on the
observed new-old performance differences; anyone is welcome to confirm this point
by taking advantage of the easily-modifiable structure of all the involved codes.

*** NOTE: despite not being supported, the situation is valid in appearance (i.e., Visual
Studio doesn't show any kind of warning or error for these erroneous inputs). For
example: decimal cannot deal with hexadecimal inputs and, consequently,
decimal.Parse("FFFFFFFF", NumberStyles.AllowHexSpecifier) triggers
an error; what doesn't happen with supported alternatives, like
long.Parse("FFFFFFFF", NumberStyles.AllowHexSpecifier). These
situations represent, in my opinion, an additional reason for creating the new
decimal.TryParseExact (I am planning to work on it during the next months and,
most likely, make it part of the new Project 9); even for redefining the parsing actions
of all the numeric types (at least, the NumberStyles usage).

The conditions under which the tests were performed also varied in a quite relevant way. The

configuration proven to deliver the most stable measurements is defined by the following:

 Closing all the running applications which might affect the measuring process.

 Running the given program three (or even five) times, one after the other, by storing
the final values (e.g., sw.ElapsedMilliseconds in the last version of
ParseNumber_Test2.exe). With ParseNumber_Test2.exe, this process needs to be
repeated with the two programs (i.e., considering New.ParseNumber and
Old.ParseNumber respectively).

 Inputting all the aforementioned values in ParseNumber_TestCalcs.exe to get the final
measurements. Note that this program outputs three main variables:
averageGapNew & averageGapOld which indicate the % variation of each new(old)
value with respect to all the remaining new(old) values; and averDiff which is the %
difference between the averages of all the old/new values. If the measurements are
stable enough (i.e., averageGapNew & averageGapOld below 1%), the final result
would be given by averDiff; otherwise, the process would have to be repeated
under different conditions (i.e., higher finalMax and/or elements in inputs.txt).

https://github.com/varocarbas/ParseNumber_Validation
https://github.com/varocarbas/ParseNumber_TestCalcs

I performed all the tests on two different computers with the following configuration:

 Computer 1: 3.4 GHz and 12 GB of RAM. Windows 10 Pro 64-bit.

 Computer 2: 2.27 GHz and 3 GB of RAM. Windows 8.1 N 64-bit.

The results from the tests were always different on account of the computer under

consideration; although they were very consistent for each computer. I spent a relevant

amount of time without being able to find a set of conditions minimising the differences

between both machines; my conclusion is that reaching this goal might be possible, but only

under extreme conditions (i.e., relevant number of inputs/iterations, what would also provoke

disproportionately high old-new differences). As explained in the next section, the most

important result of the tests has been getting very consistent and easily-reproducible

measurements (where the new version has always been faster), rather than specific values.

Definitive Tests

The option of measuring both methods together (i.e., ParseNumber_Test.exe) was quickly

proven too unreliable, mainly with big sets of inputs. That's why I relied on

ParseNumber_Test2.exe during most of the testing process. Nevertheless, this program passed

through various relevant modifications:

 My initial intention when trying two different programs (i.e., one for
New.ParseNumber and another one for Old.ParseNumber) was to get more
insights into the unstable behaviour of ParseNumber_Test.exe. Additionally, I wanted
to know whether a more efficient testing program (i.e., running ParseNumber under
more demanding conditions) might be more beneficial for one of the versions.

 While testing this new version with PerfView.exe (i.e., expressly recommended in the
CoreCLR documentation to measure performance variations), I realised that the
comparisons might be based upon the outputs of this profiler (e.g., process or CPU
time). And this is where the second stage of ParseNumber_Test2.exe started: I
removed all its internal time measurements and relied on the PerfView.exe outputs.
ParseNumber_Test2.exe became much more efficient and I could confirm that
New.ParseNumber performs better under more demanding conditions.
Curiously, this change occurred at the same time than a tiny-but-influential bug
appeared in the New class (i.e., a '\0' in one of the MatchChars overloads was
replaced with a '0'). This bug provoked the new version to be notably faster, a
variation which I assumed that was provoked by the relevant modifications in
ParseNumber_Test2.exe. As a consequence of this curious episode, I relied on the
PerfView.exe-based approach for some days (i.e., longer than what would have
happened in other scenario) and published wrong information in social media (i.e., in
my Twitter and GitHub accounts).

 After the aforementioned bug was fixed and the new-old gap dropped drastically, I
tried to further-optimise the testing program and the first decision was removing
PerView.exe from the picture; also replaced the old time measurements with the
simplistic end-minus-start-times. This is precisely the last version which I used in the
final tests referred below.

For all the final performance tests, I used the conditions described in the previous section.

Main ideas:

http://varocarbas.com/open_net/tests_definitive/
http://varocarbas.com/open_net/tests_definitive/
https://github.com/varocarbas/ParseNumber_Test
https://github.com/varocarbas/ParseNumber_Test2
https://github.com/varocarbas/ParseNumber_Test2
http://varocarbas.com/open_net/tests_approaches/

 10000 iterations of the main loop in ParseNumber_Test2.exe (i.e., finalMax =

10000); and 20000 records in inputs.txt, generated by ParseNumber_Gen (i.e.,
totInputs = 20000).

 Both programs new.exe (i.e., accounting for New.ParseNumber) and old.exe (i.e.,
accounting for Old.ParseNumber) were run three times, one after the other, and all
the final values (i.e., sw.ElapsedMilliseconds) stored.

 The aforementioned measurements were input into ParseNumber_TestCalcs.exe to
determine the final results (i.e., averDiff, the difference between the averages of
both sets of values as %), by assuming that the measuring process is valid (i.e.,
averageGapNew and averageGapOld below 1%). Note that these minimum
conditions of validity have always been met with the aforementioned inputs.

Even despite the numerous attempts and relevant testing efforts, I am still not in a position to

deliver an absolutely valid (i.e., suitable to be easily tested anywhere else) result about the

new-old differences, other than: the new one is certainly quicker. If I could set my own

computers as an absolute reference of validity I would say the following:

 On the less powerful computer (computer 2), you can easily (i.e., under the proposed
conditions; but even under less strict ones, like 5000 iterations & 10000 inputs) get a
6.3-6.5% difference.

 The most powerful computer (computer 1) used to deliver 7.0-7.5% with a previous
version. Now, it should be able to reach 8% and above; although a problem with one
of the last Windows 10 updates has made this computer too unstable to confirm this
assumption (by bearing in mind the aforementioned statement: the exact value isn't
too relevant).

On the other hand, a notable increase in the input conditions (e.g., 50000 inputs) might

provoke the aforementioned values to be notably bigger; or even by using a different

approach (i.e., the old ParseNumber_Test.exe). Same conclusions when using PerfView.exe:

the new version will always be notably better in all the aspects (i.e., lower CPU/process time

and CPU usage), but the exact values will change depending upon the computer and the input

conditions.

Additional Tests

Originally, I added the current section to comply with the .NET team request of further

validating my proposal with the CoreFX tests; although this option was quickly proven

inadequate.

The CoreFX tests don't refer to the code in the CoreCLR repository; that's why I had to look for

some CoreFX methods similar enough to the ones being modified here (i.e., MatchChars and

ParseNumber in Number.cs). In fact, I found the exact same methods in the file

FormatProvider.Number.cs (note that these versions were also modified).

Unfortunately, I could only find one test accounting for the aforementioned code: the parse

test for BigInteger in System.Runtime.Numerics; this wasn't precisely good news because

the proposed improvements are much more noticeable in decimal types. This test was quickly

deemed irrelevant. In any case, note that I firstly misinterpreted the not-saying-much results

https://github.com/varocarbas/ParseNumber_TestCalcs
http://varocarbas.com/open_net/tests_approaches/
http://varocarbas.com/open_net/tests_additional/
https://github.com/dotnet/coreclr/pull/3163#issuecomment-253381274
https://github.com/dotnet/corefx/blob/master/src/Common/src/System/Globalization/FormatProvider.Number.cs
https://github.com/dotnet/corefx/pull/13358
https://github.com/dotnet/corefx/blob/master/src/System.Runtime.Numerics/tests/BigInteger/parse.cs
https://github.com/dotnet/corefx/blob/master/src/System.Runtime.Numerics/tests/BigInteger/parse.cs

as a consequence of relying on CoreRun.exe (the Core-based alternative uses this program

internally). Bear in mind that all the references in this project to CoreRun.exe come from

equivalent not-necessarily-applicable-anymore ideas; also that the updated version of Project

8 deals with this specific issue.

By following the advice of a .NET team member, I developed a much simpler testing program

which, despite performing notably worse than the other tests on my computer (but reaching

the never-seen-before 10% on his computer!), allowed this PR to be finally accepted and

merged.

Improvements >

Introduction

As already explained, I firstly came with the idea for this project after some interactions with

the .NET community about decimal.Parse. ParseNumber is the method in charge of

performing most of the string-analysis actions which are triggered when calling

decimal.Parse/decimal.TryParse (or Parse/TryParse of any other numeric type). The

main goal of this project is to come up with a more efficient version of ParseNumber (&

related methods). Although most of my efforts have been focused on decimal (i.e., big

proportion of the performance-comparison tests), I also considered other input situations (i.e.,

accounting for additional types in a few performance tests to confirm the decimal

conclusions or when doing the final CoreRun.exe-based validation with

ParseNumber_Validation.exe).

The whole optimisation process wasn't too easy; but setting up a reliable performance-

comparison framework was much more difficult, as explained in the sections of the previous

part (Preliminary Ideas, Testing Approaches & Definitive Tests). I also found various issues

whose effects on performance were proven less important than expected; all of them are

included in the next section.

The pulled modifications were thoroughly tested under different conditions and confirmed to

improve the performance of ParseNumber (and, consequently, of all the .NET numerical-type

parsing methods). Additionally to getting lots of valuable insights into various issues (e.g., code

optimisation of unsafe C# and performance measurements under extreme conditions), I also

realised about some limitations in the current parsing methodology (what represented an

additional confirmation of the need of the upcoming decimal.TryParseExact).

Irrelevant Issues

I have a relevant expertise improving (the performance of) random algorithms and C# is one of

my favourite languages; I do have limited unmanaged-C# experience, but as already explained

this shouldn't be a problem. Despite of all that, I did find some difficulties while working on

this optimisation; even various issues whose effect on performance (i.e., shorter/longer

http://varocarbas.com/corerun_security/
http://varocarbas.com/corerun_security/
https://github.com/dotnet/coreclr/pull/3163#issuecomment-257914913
https://varocarbas.com/project_7/4/
http://varocarbas.com/open_net/improvements_intro/
http://varocarbas.com/open_net/first_contributions/
https://github.com/varocarbas/ParseNumber_Validation
http://varocarbas.com/project_7/3/
http://varocarbas.com/project_7/3/
http://varocarbas.com/open_net/tests_preliminary/
http://varocarbas.com/open_net/tests_approaches/
http://varocarbas.com/open_net/tests_definitive/
http://varocarbas.com/open_net/improvements_irrelevant/
https://github.com/dotnet/coreclr/pull/3163/
http://varocarbas.com/open_net/improvements_irrelevant/
http://varocarbas.com/open_net/coreclr/

execution time of a standalone application including the modified version of ParseNumber)

was different than expected. On the other hand, this is a more or less logical consequence of

the true motivation behind the current optimisation process: my previously-recognised extra-

motivation to get a good enough result no matter what.

Below these lines, I am including a list of modifications of the original code which were proven

to not have a positive effect on performance.

 The immediate idea coming to my mind after first seeing the code was replacing the
option binary operations (e.g., (options &

NumberStyles.AllowLeadingWhite) != 0) with variables, because their values
never changed. Binary operations are certainly quick, but wouldn't it be quicker to rely
on a variable rather than performing the same operation various times? This
assumption was proven wrong: creating a new (NumberStyles or even Boolean)
variable is slower than the original version, where binary operations are performed
every time. Additionally, relying on updated-in-each-iteration variables to store state
binary operations (e.g., (state & StateSign) == 0) isn't a good idea either.

 I also tried the approach in the previous point with constants. For example: const
Int32 StateParens2 = -0x0003 to convert state &= ~StateParens into
state &= StateParens2. This time, getting a worse performance was less
surprising; the only chunks of code allowing such a configuration, the aforementioned
one and state |= StateSign | StateParens, aren't too relevant (i.e., virtually
no time is spent there in any input scenario).

 The aforementioned ideas are not applicable to non-binary operations. For example:
replacing all the occurrences of bigNumber with its (sb != null) equivalence is
slower.

 There was a specific modification which seemed to deliver a better performance in the
first tests, but which was finally proven inadequate (i.e., indifferent from a
performance point of view and, consequently, not part of the modifications to be
pulled). It consisted in replacing the char variables with their int equivalences, but
only when being involved in mathematical operations. For example: converting ch >=
'0' && ch <= '9' into ch >= 48 && ch <= 57.

Final Version

This whole project has become much more complex than initially expected. The most difficult

part was coming up with a reliable and overall-applicable testing framework to accurately

measure the performance variations. Nevertheless, the results of this extra-effort are certainly

worthy: not only a more efficient ParseNumber version, but also lots of relevant insights

about performance improvement (comparison and testing) under very demanding conditions.

I did come up with the first good enough version of the new code relatively quickly, but didn't

make the final decision about certain parts until after all the tests were completed. In fact, I

found various issues whose almost irrelevant effect on performance was kind of surprising to

me; all of them are mentioned in the previous section.

The last version of the modified code (i.e., the one in my pull request to CoreCLR) includes

various changes in ParseNumber and in the second MatchChars overload with respect to the

http://varocarbas.com/open_net/general_impression/
https://github.com/dotnet/coreclr/blob/master/src/mscorlib/src/System/Number.cs
http://varocarbas.com/open_net/improvements_final/
http://varocarbas.com/open_net/improvements_irrelevant/
https://github.com/dotnet/coreclr/pull/3163/files

original version. The table below these lines includes a reference to each of them, together

with a % estimation of its contribution to the overall improvement (as defined in the last

section of the Tests part).

Modification Contribution (%)

altdecSep & altgroupSep removal 40

signflag removal 30

Redefinition of IsWhite(ch)-headed conditions 12

Redefinition of MatchChars(char* p, char* str) 11

bigNumberHex removal 7

All the aforementioned modifications refer to variable and method names present in the

original version of the code. The justification for all these improvements should be more or

less evident, except perhaps the bigNumberHex removal. Note that this modification implies

to remove a Boolean variable (bigNumberHex) by replacing it with the less-efficient chunk of

code (bigNumber && ((options & NumberStyles.AllowHexSpecifier) != 0)).

Such a trade-off is positive because of happening in a part which is rarely used (i.e., all the

benefits of removing one variable, but almost none of the slower-code drawbacks). Note that

bigNumberHex is only used with hexadecimal inputs (i.e., a not-too-likely scenario); and even

in this situation, exclusively with the non-numerical characters (note that a hexadecimal value

might consist only in numbers). Thus, the affected condition is verified most of the times

through the first short-circuited term by ignoring the new slower code.).

Conclusions

The first conclusion is that meeting the main goal of this project (i.e., improving the

performance of ParseNumber & related methods) has been more difficult than expected; as a

result of this unplanned-complexity, quite a few relevant outputs have been generated.

Examples: various open-source applications (i.e., ParseNumber_Test.exe,

ParseNumber_Test2.exe, ParseNumber_Gen.exe, ParseNumber_TestCalcs.exe &

ParseNumber_Validation.exe), good insights into the best methodologies to accurately

measure time differences between similar programs or more knowledge about performance

improvements in unmanaged-C# codes. In general, this has been a very good first experience

in open .NET (also my first open-source contributions ever).

Just by looking at the original goal of this project (i.e., more efficient version to be pulled to

CoreCLR), the conclusion is that the final result has also been very good: the modified code is

clearly quicker (i.e., every time and under all the testing conditions) without affecting the

original algorithm at all and without adding any negative issue (e.g., lower readability or

scalability).

The whole evolution of this project has also been a good mood-booster (and self-promotion). I

chose the first chunk of code I saw in CoreCLR (by pure accident, while pre-analysing my

http://varocarbas.com/open_net/tests_definitive/
http://varocarbas.com/open_net/tests_definitive/
http://varocarbas.com/open_net/improvements_conclusions/
https://github.com/varocarbas/ParseNumber_Test
https://github.com/varocarbas/ParseNumber_Test2
https://github.com/varocarbas/ParseNumber_Gen
https://github.com/varocarbas/ParseNumber_TestCalcs
https://github.com/varocarbas/ParseNumber_Validation

original decimal-related concerns, #2285 and #2290), which happened to be in one of the

most basic, old and highly-optimised parts of the whole .NET Framework (i.e., numeric type

parsing inside mscorlib.dll). I started this optimisation project even before having analysed

the code in depth. Everything gets more complicated than expected, what makes me spend

here much more time and effort than originally planned (by bearing in mind that this is a R&D,

no-income-generating activity). And as a result of all this, I deliver what, in my opinion, is the

most interesting & comprehensive project about programming since this site was created!

OVER-8-MONTH-LATER UPDATE

As explained in similar updates in other sections, this PR was accepted and even provoked

modifications in other repositories (i.e., CoreRT and CoreFX versions of the same methods).

Although it took quite long (over 8 months), I understand that modifications affecting a so

essential part (i.e., used by the Parse/TryParse methods of all the numeric types) cannot be

accepted right away. I am certainly happy with how everything went.

https://github.com/dotnet/coreclr/issues/2285
https://github.com/dotnet/coreclr/issues/2290

	PROJECT 7 - First Contact with Open .NET
	Completed on 13-Feb-2016 (47 days) -- Updated on 19-Nov-2016

