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Introduction >  

Overview 
 

This project explains the calculation methodology which I used to develop NumberParser's 

Math2.PowDecimal/Math2.SqrtDecimal, methods extending the native double (floating-

point) implementations (i.e., Pow/Sqrt in System.Math) to decimal (not floating-point). It is 

eminently focused on fractional aspects because this is where the floating-point peculiarities 

are more influential, although there is also an integer exponentiation section. 

Microsoft hasn't published the Pow/Sqrt source codes, but they are most likely very similar to 

equivalent functionalities in other languages or in mathematical libraries. While pre-analysing 

this whole situation, I took a look at the C library Cephes, which is an interesting reference for 

anyone looking for insights into all this. 

Note that the floating-point peculiarities are precisely meant to efficiently deal with 

computationally-expensive calculations, what is certainly the case with exponentiation 

algorithms. Additionally, most of these algorithms are also relying on further assumptions and 

simplifications, at least for certain scenarios. 

In summary, the goal of most of the existing (floating-point-based) exponentiation 

implementations is delivering reasonably accurate results as quickly as possible. On the other 

hand, the approach described here is mostly focused on delivering as accurate as possible 

results reasonably quickly. 

 

.NET Decimal Type 

 

As per the corresponding MSDN reference for C#, decimal is a 128-bit data type whose 

precision (e.g., 0.0000000000000000000000000001m) and range (e.g., 7e28m) are around 

28 digits. Contrarily to what happens with the other .NET decimal types (i.e., double and 

float), it isn't floating point. 

The decimal type is defined by its high precision and that's why this has been an accuracy-

oriented development since the very beginning. As explained in the corresponding section, the 

immediate result of such an intention is that PowDecimal/SqrtDecimal take into account 

most of the significant digits of the decimal type (note that the reasons for only "most of", 

the first 25 decimal digits, are also explained in the aforementioned other section). 
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The relatively big decimal range is also an important issue for the integer exponentiation 

aspects of this implementation. Note that this range is notably beyond the one of the biggest 

signed integer type (i.e., long, around ±9.2*10^18) and, consequently, no integer type might 

be used. The main consequence of such a limitation is the impossibility of relying on bitwise 

operations. 

 

Algorithm >  

Integer Exponentiation 
 

The integer exponentiation method (i.e., the one being called when using 

Math2.PowDecimal with an integer exponent) is PowIntegerPositive. It implements an 

exponentiation by squaring approach and relies on the decimal type, either directly or 

indirectly through Number. As indicated by its name and equivalently to what happens with 

the fractional exponentiation, this method only expects positive inputs. 

In calculations involving non-integer exponents, PowIntegerPositive is called at least 

twice: when determining the root of the exponent denominator and when raising that result 

to its numerator. In that first scenario, various calls are likely to occur because the root finding 

algorithm, despite converging quite quickly (custom-improved Newton-Raphson), usually 

needs various iterations. 

Contrarily to what happens in the fractional part, the current version of the integer 

exponentiation algorithm might even compete in speed with the native version (i.e., 

System.Math.Pow with integer exponents). In any case, the following two issues would need 

to be taken into account: 

 Just the fact of being part of the .NET Framework itself (Pow) or of a library created in a 
.NET language (PowDecimal) represents an unmeasurable uncertainty which affects 
the reliability of the measurements. Note that the open-source essence isn't helpful 
here as far as the Pow/Sqrt source codes haven't been made public. So in principle 
(i.e., without Microsoft's help), there is no way around this issue. 

 Number is the most efficient NumberX, but it performs notably worse than a native 
type like decimal. For NumberParser, Number is undoubtedly the best option; for 
performance-measuring purposes, it would be better to replace these variables with 
native ones. 

 

Fractional Exponentiation 

 

The fractional exponentiation calculations are performed by PowFractionalPositive, 

which deals with all the exponentiation scenarios involving non-integer positive exponents. Its 

algorithm is a Number-based implementation of the expression x^m/n = root(x, n)^m and 

that's why is formed by three main parts: 

 Fraction determination. The exponents are always decimal variables which need to 
be converted to fractions via GetFraction. 
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Note that the aforementioned method doesn't look for the most simplified alternative, 
but for a 10-based one (e.g., 0.4 outputting 4/10 rather than 2/5). The reason for 
relying on what seems a less efficient approach is explained in the next point. 
Additionally, this method avoids the denominator to grow beyond 1e25m, what 
implies that only the first 25 decimal digits of the exponent will be considered. As 
explained in the corresponding (code) comment, this limitation is meant to avoid 
numbers beyond the decimal precision in the subsequent Newton-Raphson 
calculations. As far as this issue shouldn't be seen as a problem (the 26th decimal 
position of the exponent being relevant?!), I have no plans to fix it. 

 Calculation of the n root. This is the most important part of the described 
implementation and of the current project. Here is where the non-floating-point high 
precision expectations become more problematic; the point where the generic 
implementations fail; what justifies the last part of this project. 
The next section, together with the aforementioned last part, explains all this code in 
detail. Nevertheless, its main ideas can already be summarised in the following points: 

o GetNRoot implements the Newton-Raphson method. 

o This method is highly dependent upon the initial guess (i.e., fx[1] right at the 
start). 

o The approach determining the initial guess works well with multiple-of-10 roots. 

 Raising the calculated root to m by calling PowIntegerPositive (already described 
in the previous section). 

 

Root Finding 

 

As explained in the previous section, the n-root calculation is the most relevant part of the 

described fractional exponentiation algorithm. GetNRoot takes care of this through a Number-

adapted optimised version of the Newton-Raphson method dealing with f(x) = x^n - value. 

The last three sections of this project describe this algorithm in detail. 

 The next section explains this approach and its implementation in GetNRoot. 

 The last two sections (Exponential Proportionality and Method Improvement) analyse 
the Math2_Private_New_PowSqrt_RootIni.cs contents; a file which includes all the 
code in charge of determining the most adequate initial guess. Without this part, the 
Newton-Raphson method wouldn't be able to deliver what is required because of 
failing (i.e., getting stuck in an infinite-loop-like situation) under virtually any scenario 
involving a relevant number of digits. 

Additionally, note that GetNRoot isn't meant to calculate any root for any number. It can only 

deal with certain inputs. 

 Its algorithm assumes that value will always be a positive number. The whole 
approach determining the most adequate initial guess also comes from this 
assumption. 

 Its heavy dependence upon the corresponding initial guess restricts the possible values 
of n to 2 and numbers which are divisible by 10. Note that this is just a consequence of 
the current implementation, not an absolute limitation. 
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Newton-Raphson Method >  

Method Overview 
 

The Newton-Raphson method is an iterative methodology for finding the roots of real 

functions, defined by x_i+1 = x_i - f(x_i) / f'(x_i) and starting from an initial guess x0. In the 

current implementation (i.e., GetNRoot), the goal is solving the function f(x) = x^n - value, 

what yields: 

f(x) = x^n - value 

f'(x) = n*x^(n-1) 

x_i+1 = ((n - 1) * x_i + value / x_i^(n-1)) / n 

 

GetNRoot includes a Number-based version of the aforementioned equation inside a loop 

exited when the difference between the x_i+1 and x_i values is smaller or equal than the 

target accuracy of 1e-28m. Note that this is assumed to be the smallest positive value with 

which the most precise type (i.e., decimal) can reliably deal. 

This approach has only one relevant limitation: the initial guess x0 has to be similar enough to 

the final result. A bad initial guess would provoke (practically speaking) infinite loops in quite a 

few scenarios. The methodology with which I came up to address this issue is undoubtedly the 

most important part of the current implementation. The following two sections (Exponential 

Proportionality and Method Improvement) include detailed explanations about it, but some 

points should already be clear: 

 The calculations in GetNRoot are always started from an acceptably good initial guess 
(i.e., a right solution for the target accuracy will always be found quickly). 

 Under very specific conditions (and, presumably, only when being called from 
Math2.SqrtDecimal), the calculations might have to be exited before reaching 
convergence in order to avoid an infinite loop. The accuracy in these cases (5e-28m) is 
very similar to the usual one. 

 

Exponential Proportionality 

 

The first thing to highlight is that I came up with the ideas in this and the next section 

completely by my own; I saw certain patterns while performing some tests meant to improve 

the fractional exponentiation algorithm. I didn't do any research on this front and am not 

aware about any theory on these lines. 

With "exponential proportionality", I refer to the common trends underlying all the results 

generated by the power of certain real number (e.g., 2^3.2, 5.5^3.2 and 100000^3.2 being 

somehow related). Logically, these trends will never have a linear behaviour and, technically 

speaking, these values aren't proportional; on the other hand, "proportionality" seems to 

intuitively provide a very clear picture about this behaviour. 

Validating the aforementioned ideas with NumberParser is quite straightforward. For instance, 

consider the following C# code: 
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decimal exponent = 3m; 

NumberD res = Math2.ApplyPolynomialFit 

( 

   Math2.GetPolynomialFit 

   ( 

      new NumberD[] { 3m, 4m, 6m, 7m }, 

      new NumberD[]  

      { 

         Math2.PowDecimal(3m, exponent), Math2.PowDecimal(4m, exponent), 

         Math2.PowDecimal(6m, exponent), Math2.PowDecimal(7m, exponent) 

      } 

   ), 

   5m 

); 

Number res2 = Math2.PowDecimal(5m, exponent); 

NumberD diff = Math2.Abs(res - (NumberD)res2); 

 

This code calculates certain power (3) of a given value (5) by analysing (second degree 

polynomial fit) the way in which the surrounding values (3, 4, 6 and 7) behave. This specific 

calculation is very accurate (i.e., diff is virtually zero), what isn't the case in quite a few other 

scenarios. In fact, the aforementioned implementation only works acceptably well with small 

values and exponents. Nevertheless, the restricted applicability of this implementation is 

exclusively provoked by the simplistic trend-finding methodology and doesn't affect the 

validity of the proposed ideas. 

In any case and even by assuming that reliable trends could easily be found for any possible 

scenario, the resulting outputs would be unacceptably inaccurate. Bear in mind that the fastest 

exponentiation approach systematically delivering errors (0.1% or 0.0001%) wouldn't be 

acceptable; much less here, where accuracy is the top priority. But there is a situation which 

can be benefitted from these not-too-accurate results: the important determination of the 

initial guess in the Newton-Raphson method. 

That initial guess expects a good enough estimate for the n-root calculation (i.e., the inverse of 

power, which also shows the described behaviour) of any positive number. In principle, these 

requirements seem quite far away from the aforementioned ideal conditions, but what if the 

number of potential n values could be highly reduced? In that case, wouldn't it be possible to 

create a limited number of trends to account for all the input scenarios? The answers to these 

and similar questions can be found in the next section.  

 

Method Improvement 

 

The intended fractional exponentiation approach is expected to account for most of the 

significant digits of the decimal type. Thus, the corresponding algorithm has to be able to 

deal with many scenarios involving fractions formed by big numbers (e.g., 0.23456789885 

defined by the fraction 23456789885/10^11), what implies that the n-root calculating 

approach (i.e., Newton-Raphson) has to be able to deal with a huge range of n values (i.e., 

many integers within the 1-10^28 range). 
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The complexity of the aforementioned fraction can be reduced by analysing its constituent 

elements separately: the numerators are used in integer exponentiation (quick and reliable 

implementation easily dealing with any number) and the denominators in Newton-Raphson 

(reliability conditioned by the initial guess). Additionally, the ideas in the previous section seem 

to indicate that somehow reducing the number of n values/denominators (or inter-relating 

them) could be helpful to find good initial guesses. That's why it soon became clear that the 

best option was creating multiple-of-10-based fractions. 

Even under the aforementioned conditions, the number of different input scenarios might still 

be too big (i.e., at least, 28 different trends); but the multiple-of-10 reliance proved to also be 

helpful on this front, via noticeable similarities across different n values (e.g., 10, 1000 or 

10^10). I was able to come up with relatively simple approaches delivering acceptably good 

guesses for all the possible n values. 

Math2_Private_New_PowSqrt_RootIni.cs includes all the code calculating the initial guesses 

for GetNRoot. These algorithms describe the patterns which I saw after analysing a reasonably 

big number of different input conditions; for example, after writing to a file the roots for 10, 

10^2, 10^3, etc. with n = 10, 100, 1000, etc., a simple visual inspection was enough to extract 

worthy conclusions. All this information is referred by one of the following two main methods: 

 GetBase10IniGuess deals with all the cases where n is a multiple of 10, what 
includes all the n-root calculations performed by the fractional exponentiation 
algorithm (i.e., using Math2.PowDecimal with non-integer exponents). By bearing in 
mind that it is the first version of an innovative approach, this code delivers what is 
expected (i.e., good enough initial guesses for any possible scenario). 
Although all this part does seem improvable, I have no short-term plans to optimise it. 
On the other hand, I will submit a CoreFX issue suggesting to add decimal overloads 
to the System.Math methods Pow/Sqrt (note that a previous similar issue was 
reviewed and rejected, although not completely); if the .NET team decides to go ahead 
with that new suggestion, I would certainly work on optimising the current 
implementation. 

 GetBase2IniGuess deals with the specific scenario where n equals 2 (i.e., when 
using Math2.SqrtDecimal). 

In summary, the described implementation allows the Newton-Raphson method to deal with 

virtually any input scenario (i.e., any value within the Number range and any exponent within 

the decimal range, by bearing in mind the aforementioned 25-first-decimal-digits limitation), 

what implies that a valid result for the target accuracy (i.e., 1e-28m or, under very specific 

conditions, 5e-28m) will always be found. 
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